

Technische

Active Debris Removal of Multiple Priority Targets

V. Braun, A. Lüpken, S. Flegel, J. Gelhaus, M. Möckel, C. Kebschull, C. Wiedemann, P. Vörsmann

39th COSPAR Assembly, Mysore, India

Overview

- Introduction
- Priority targets
- Scenario definition
 - ➤ Chemical propulsion
 - > Electric propulsion
- Conclusion

Priority targets

- Enhancing mission efficiency by removing priority targets first
- Definition of a priority criterion R wrt. collisional cascading:

$$R_i = P_{c,i} \cdot m_i$$

- Using MASTER-2009 to determine target orbit catastrophic flux
- Processing collision probability P_{c,i} from catastrophic flux and object's crosssection

Scenario definition – Chemical propulsion (1)

Scenario 1:

Scenario 2:

Undocking and

going for next target

Docking

Scenario definition – Chemical propulsion (2)

- Main problem in multi-target mission:
 Orbital plane change maneuvers
- Two possible solutions:
 - ➤ Take advantage of natural differential nodal precession (Scenario 2)
 - Perform orbital plane change maneuver (Scenario 1)

Scenario definition – Electric propulsion (1)

Scenario 3:

Scenario 4:

- Similar to Scenario 3
- Additional thruster to provide thrust normal to orbital plane
- Providing plane change capability

Scenario definition – Electric propulsion (2)

 Combined change of inclination and RAAN by changing thruster orientation at specific location

$$\frac{di}{dt} = \frac{r \cdot \cos u}{n \cdot a^2 \cdot \sqrt{1 - e^2}} \cdot f_n$$

$$\frac{d\Omega}{dt} = \frac{r \cdot \sin u}{n \cdot a^2 \cdot \sqrt{1 - e^2} \cdot \sin i} \cdot f_n$$

 Tuning of arbitrary ratio of inclination to RAAN change possible

Chemical propulsion – Results (1)

Scenario 2

- Nearly constant ∆V of 1.2 km/s
- Mission duration of about 200 days

Scenario 1

- Five-target mission (Zenit-2):
 - \triangleright Minimum $\triangle V$ of 7.5 km/s
 - ➤ About 5,500 kg system mass
- Four-target mission (Zenit-2):
 - ➤ Acceptable △V of 2.3 km/s
 - ➤ System mass at 2,400 kg

Chemical propulsion – Results (2)

Electric propulsion – Results (1)

- Higher fuel mass for Scenario 4 (as expected)
- Additional fuel needs acceptable, especially for heavy targets

Electric propulsion – Results (2)

- Very high mission time
- Depends on thruster usedF = 75 mN in this case

Conclusion

- Active debris removal essential for stabilisation of LEO debris environment
- Identification of priority targets to enhance mission efficiency
- Orbital plane change maneuvers required due to RAAN / inclination distribution
- Chemical propulsion:
 - ➤ trade-off between Scenario 1 and 2 would result in acceptable values for ΔV and mission duration
- Electric propulsion:
 - > Additional thrust normal to plane during transfer looks promising
 - ➤ More powerful thruster would allow for reduction of mission duration

