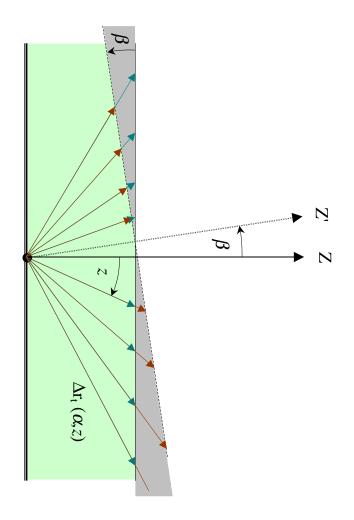
Refined GPS Analysis Strategies for EUREF Tested by CODE

Stefan Schaer

AIUB/CODE, Switzerland stefan.schaer@aiub.unibe.ch

June 1, 2001

3rd EPN LAC Workshop Warsaw, Poland


Characteristics of CODE EUROCLUS Solutions in Overview

24	Yes	Niell	Yes	5	Yes	NMG
24	N _o	Niell	Yes		Yes	NM5
24/12	No	Niell/intro	Yes	10	Yes	円 円
24	No	Niell	Yes	10	Yes	EQ_
24	No	Niell	Yes	15	Yes	MMW
24	No	Niell	No	15	Yes	NMF
24	No	Saas	No	15	Yes	EQB*
12	No	Saas	No	15	No	EG_
# trop par	Grad est	Trop mod	Amb res Min el ED obs wgt	Min el	Amb res	D

^{*}Official COE solution

Troposphere Gradient Estimation

Tilting of the "tropospheric" zenith by the angle β :

Why Considering Low-Elevation Data?

The inclusion of low-elevation data has two major advantages:

- the increase would be almost 28 percent network. When looking at simulated data (full tracking down to 5 degrees) The number of observations increases by about 13 percent when going from 15 to 5 degrees. This number is valid for actual data from the EPN GPS
- A better decorrelation of the estimated height and the tropospheric delay parameters of the same station is achievable

ONSA Daily Station Coordinate Reproducibility

North/East/Up standard deviations given in units of mm:

D	Amb res	Min el	ED obs wgt	Trop mod	Grad est	Z	т	C
LG_	No	15	No	Saas	No	1.7	1.9	4.2
EQB*	Yes	15	N _o	Saas	N _o	1.7		4.3
-	Yes	15	N _o	Niell	N _o	1.7		44
MMM	Yes	15	Yes	Niell	N _o	1.4	<u>-</u> သ	4.0
•	Yes	10	Yes	Niell	N _o	<u>1</u> .5		3 <u>.</u> 6
변 니 _	Yes	10	Yes	Niell/intro	N _o	<u>1</u> .6		<u></u>
NM5	Yes	IJ	Yes	Niell	N _o	<u>1</u> .6	<u>1</u> .4	<u>ვ</u>
NMG	Yes	5	Yes	Niell	Yes	0.9	1.0	3.4

^{*}Official COE solution

Conclusions

- change the daily repeatability. The change of the mapping function (from Saastamoinen to Niell) did not
- weighting of the observations and from the inclusion of low-elevation data. The biggest improvement in height results from the elevation-dependent
- A small improvement in the horizontal position is obtained by weighting the observations
- the results by improving the horizontal positions by a factor of almost two (from approximately 2 to 1 mm) compared to the "standard" solution EQB. The estimation of troposphere gradients has definitely the largest impact on
- results or local—GPS data analysis may lead to considerably improved station height The consideration of "global" troposphere delay estimates as part a regional—

Outlook—Ideas for Future Test Solutions

- day boundaries Troposphere parameterization without discontinuities, eventually also over
- Minimal elevation angle of 3 (or even 0) degrees
- Slightly modified elevation-dependent observation weighting functions
- Other tropospheric mapping functions
- "Tropospheric" zenith perpendicular to global geoid
- Atmospheric loading
- Satellite-specific observation weighting scheme (using SP3 accuracy code information)
- Station-specific observation weighting scheme
- Multipath reducing models